Computer Architecture

End-sem Evaluation

Project Members:

Wrik Bhadra (MT18027)
Shubham Kumar (MT18145)
Dhruv Kaushik (MT18037)

1T Delhi
New Delhi 110020, India

Classic Memory System

* MOESI snooping protocol as cache coherence protocol

Processor | * Non-blocking Shared L2 cache keeps servicing requests instead of

Uade Uade uade Udde blocking them despite having a miss.
s * It has two associated buffers: Writeback buffer and MSHR buffer.
l * Keeps miss related information in Miss Status holding registers
| — | (MSHR).

Cache Blocking: Shared cache gets blocked If its any register (MSHR or Writeback) gets full. Can’t service any
further request from any core.

It is not unblocked until internal buffers become free again.
Writeback Buffer is used to store information of dirty cache lines.

Denial-of-Service (DoS) Attack : Making lots of requests in a short time interval to a service provider, with an
aim to block its service by overloading it.

Cache DoS attack : A malicious application generates such frequent read/write requests that fills up
read/write register associated with shared cache, leading to its blocking.

Attacker (malicious) applications can’t directly affect victim application, due to core/memory isolation.

But Attacker can block shared cache to reduce victim application performance by performing Denial-of-
Service (DoS) attacks on the shared cache.

Victim and Attack Programs

Victim Program: MCF program of SPEC_int_2006 benchmark. MCF program is used for single-depot vehicle
scheduling in public mass transportation.

ﬁinciude<igstream>
ne SIZE 1048576

For performing Write DoS attack, we created the

. . LINE SIZE 16
attacker code as shown in snippet: #define GAP 131072
. . using namespace std;
On execution, it almost always generates a cache int ptr[SIZE] [LINE SIZE] ;

Hint main() {

miss, generating lots of misses leading to MSHR B for(int j = 0; j < 15; j+4){
% for(int i = 0; i < SIFZE; i += 1){
filling and cache blocking. - Ferfine k= 0z s kel
ptrl(i + GAP * k) % SIZE][j] += 1;
It is also writing value in all requests made, thus] } }
simultaneously attacking Writeback buffer. ' leturn
}

Concurrent reads (read attacker) = stress MSHR.

Concurrent writes (write attacker) - stress MSHR and WB Buffer.

Experiments

Config 1 Config 2 Config 3 Config_4
CPU TimingSimple | TimingSimple TimingSimple DerivO3CPU
(1 GHz) (1 GHz) (1 GHz) (1GHz)
L1 cache size 64 KB 64 KB 64 KB 64 KB
L2 cache size 256 KB 512KB 256 KB 256 KB
L2 set assoc. 8 way 16 way 8 way 8 way
L2 mshrs 20 40 20 20
Writeback buf size | 8 16 8 8
Prefetching - - Stride prefetching |

Hardware configurations experimented

Experimented on various
hardware configurations:
with and without
prefetcher, varying shared
cache size and different
types of processors (in-

order and out-of-order).

* On each configuration above, performed 4 DoS attacks: baseline (4 Victim cores), single attack(3 victim, 1

attack core), double attack (2 victim, 2 attack cores), triple attack (1 victim, 3 attack cores).

* Noted various parameters related to L2 in generated stats file to analyze L2 performance:

* |2cache.overall_miss_rate : The miss rate for all accesses

* |2cache.overall_miss_latency : Total number of cycles spent waiting for all misses

* |2cache.tags.occ_percent::cpu_id.data : Average percentage of L2 cache occupancy by CPU cpu_id

Miss Latency(Small Cache vs Large Cache)

B Small Cache [Large Cache
10

w
o
£
K 6
z
[~
a3 4
5 77 | 379
=
, R
Base Single Core Attack Double Core Attack Triple Core Attack
Scenarios

Fig:

Overall Miss Rate Comparison for Config_1 vs Confiig_2

Data Cache Occupancy on Four Cores - Module 2(Large Cache,
Without Prefetching)

B co=0 M corel W Corez W Cored
B0
60

40

20

Data Cache Occupancy %

Base Single Core Attack Double Core Attack Triple Core Attack

Scenarios

Fig: Core-wise L2 cache occupancy in Config_1

Overall Miss Rate(Small Cache vs Large Cache)

B smallCache [l Large Cache

78.64378.334]

L2 Cache Miss %

Base Single Core Attack Double Core Attack Triple Core Attack

Scenarios

Fig: Miss Latency Comparison for Config_1 vs Config_2

Data Cache Occupancy on four cores - Module 1(Small Cache,
Without Prefetching)

W core0 W corel [Corez M Core3
80

40

20

Data Cache Occupancy %

Base Single Core Attack Double Core Attack Triple Core Attack

Scenarios

Fig: Core-wise L2 cache occupancy in Config_2

Miss Latency(Without Prefetching vs With Prefetching)

B without prefetching [l With Prefetching

Overall Miss Rate(Without Prefetching vs With Prefetching)

B without prefetching [l With Prefetching

23 100

Miss Latency(x times)
L2 Cache Miss %

L Single Core Attack Double Core Attack Triple Core Attack Base Single Core Attack Double Core Attack Triple Core Attack

Scenarios Scenarios

Fig : Overall Miss Latency Comparison for

Fig : Overall Miss Rate Comparison for Config_1
Config_1 vs Config_3

(without prefetching) vs Config_3 (with prefetching)

Data Cache Occupancy on Four Cores - Module 3(Small Cache, With
Prefetching)

B core0 M cCorel) Corez [Core3
80

) | II
, HEER
Base

Single Core Attack Double Core Attack Triple Core Attack

Data Cache Occupancy %
5

Fig : L2 cache occupancy by multiple cores in
Config_3 (also named as Module 3)

Scenarios

Miss Latency (Out-of-order Processor, without Prefetching) Overall Miss Rate (Qut-of-order processor without Prefetching)
(3 100

T

E ® 72.1422

E 8

% E 57.0793

3 5 39.2773

8 S

5
Base Single Core Attack Double Core Attack Triple Core Attack Base Single Core Attack Double Core Attack Triple Core Attack

Scenarios Scenarios
Fig : Overall Miss Latency for Config_4 Fig : Overall Miss Rate for Config_4 (Out-of-Order

(Out-of-Order processor) processor)

Data Cache Occupancy on Four Cores (Out -of-order Processor,
without Prefetching)

B core0 W Corel | Corez W Core3
50

40
30
20

10

Data Cache Occupancy %

Base Single Core Attack Double Core Attack Triple Core Attack

Fig : L2 cache occupancy by multiple cores in
Config_4

Scenarios

Conclusions

Processors using prefetchers and Out of order processors also faced slowdown or increased L2 miss latency
when attacker code was executed.

The highest increase(21x) in L2 overall miss latency is observed in case of In-order Processor, with
Stride Prefetcher and small shared cache size(256 KB).

Increasing the shared L2 cache size from small(256 KB) to large(512 KB) did not have much impact
on L2 overall miss rate and L2 overall miss latency

In out-of-order processor, we found that the L2 cache overall miss rate and L2 overall cache miss
latency does not increase as quickly as in case of in-order.

In Base scenario, cache occupancy is almost uniform for all four cores.

Though in single core attack only, we found that attacking core occupies more than 75% of the L2 cache. This
occupation of L2 increases as the number of attacks increases from single to double to triple, thus giving less

and less room to victim core in L2 to function.

6.

References

Michael Bechtel and Heechul Yun, “Denial of Service Attacks on Shared Cache in
Multicore: Analysis and Prevention”, 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS)

Gemb5 tutorial : http://gem5.org/Main Page

Gemb5 tutorial : http://learning.eem5.org/book/

N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer Architecture News,
vol. 39, no. 2, pp. 1-7, 2011.

Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible DRAM Simulator”.
IEEE Computer Architecture Letters, 2016

J. Hennessy and D. Patterson, “Computer Architecture: A Quantitative Approach”, 2011

Thank You

