
Cache DoS attacks on Shared Cache in Multi-core
System

Dhruv Kaushik, MT18037
Indraprastha Institute of Information

Technology, Delhi
India

dhruv18037@iiitd.ac.in

Shubham Kumar, MT18145
Indraprastha Institute of Information

Technology, Delhi
India

shubham18145@iiitd.ac.in

Wrik Bhadra, MT18027
Indraprastha Institute of Information

Technology, Delhi
India

wrik18027@iiitd.ac.in

I. INTRODUCTION
In Denial-of-Service (DoS) attack, attacker makes

lots of requests in a short time interval to a service
provider, with an aim to block its service by
overloading it. In Cache DoS attack, the attacker
generates such frequent read/write requests that fills up
read/write register associated with shared cache,
leading to its blocking. This project aims to perform
and analyse Denial-of-service (DoS) attacks on shared
cache in multicore systems. By executing DoS attacker
task, we are able to increase execution time for victim
task running on a separate dedicated core.

Attacker application can’t directly affect victim
application, due to core/memory isolation. So, it
attacks on the non-blocking shared cache.

Non-blocking cache keeps servicing requests instead
of blocking them despite having a miss. It keeps the
miss related information in Miss Status holding
registers (MSHR). Non-blocking caches allow
concurrent memory accesses from multiple cores and
they are often used as last-level caches in multi-core
systems. It has two associated buffers: Writeback
buffer and MSHR buffer. It behaves like blocking
cache when any of the two buffers becomes full and
deny servicing requests. It is not unblocked until
internal buffers become free again. Writeback Buffer
is used to store information of dirty cache lines.

In this project, we have performed Write DoS attack,
which targets both the above buffers in the shared
non-blocking cache at last level (level-2). This leads to
high frequency of Cache blocking and thus reducing
the system’s performance. We simulated embedded
multicore platform and executed victim tasks and
attacker tasks on it with varying configurations. We
are able to successfully perform Cache DoS attack on
shared cache in multicore system.

II. VICTIM AND ATTACK PROGRAMS
We used MCF program of SPEC 2006 int benchmark
as victim program. MCF program is used for
single-depot vehicle scheduling in public mass
transportation. [2]

For performing Write DoS attack, we created the
attacker code as shown in figure 1. On execution, it
almost always generates a cache miss, thus generating
lots of misses leading to MSHR filling and cache
blocking. Also note that it is also writing value in all
requests made, thus simultaneously filling Writeback
buffer. Thus, it’s a two way attack.

Figure 1: Write attack code snippet

III. METHODOLOGY

1. Basic Architecture
We first created a basic Multicore architecture
consisting of 4 cores and 2-level caches, among which
1st level cache is private cache and is individually
associated with each processor. The 2nd level cache is
the non-blocking cache, shared among all processors,
on which the attacker makes DoS attack. The system
architecture follows the Classic Memory System

model and uses MOESI snooping protocol as cache
coherence protocol.

Fig. 2 : Computer Architecture proposed to be used
in this project

2. Experiments
We experimented on various hardware

configurations: with prefetcher, without prefetcher,
varying shared cache size and different types of
processor (in-order and out-of-order). The various
system configurations are tabulated in table 1:

Table 1: Hardware configurations experimented

Fig3: (a) Overall Miss Rate Comparison for Config_1
vs Config_2 (b) L2 cache occupancy in Config_1

For, each of the configuration mentioned in Table 1,
we performed 4 DoS attacks: 4 Victim cores (baseline
case for that architecture), 3 victim cores and 1 attack
core (single attack), 2 victim cores and 2 attack cores
(double attack), 1 victim core and 3 attack cores (triple
attack). As the victim program (MCF) is a heavy
program w.r.t the configurations mentioned in Table 1,
we run the program for 200 million instructions and
noted various parameters related to L2 in generated
stats file to analyse L2 performance.

We selected these few parameters as well indicators of
L2 performance: l2cache.overall_miss_rate (The miss
rate for all accesses), l2cache.overall_miss_latency
(Total number of cycles spent waiting for all misses),
l2cache.tags.occ_percent::cpu_id.data (Average
percentage of L2 cache occupancy by CPU cpu_id
where id varies from 0 to 3). We have plotted below
the results on these parameters obtained for all the
Table 1 configurations after DoS attack.

IV. RESULTS
After performing experiments on simulated multi-core
platforms, we obtained interesting results. We have
plotted interesting observations as bar graphs. These
graphs comprise of L2 Overall Miss Latency, L2
Overall Miss rate, L2 cache occupancy related plots
are provided below:

Fig4: (a) Miss Latency Comparison for Config_1 vs
Config_2 (b) L2 cache occupancy in Config_2

Fig 5 : Overall Miss Rate Comparison for Config_1
(without prefetching) vs Config_3 (with prefetching)

Fig 7 : Overall Miss Rate for Config_4 (Out-of-Order
processor)

Fig 9 : L2 cache occupancy by multiple cores in
Config_3 (also named as Module 3)

V. CONCLUSION

In our project, we tried to perform DoS attacks on
shared caches in multicore platforms. After performing

Fig 6 : Overall Miss Latency Comparison for
Config_1 vs Config_3

Fig 8 : Overall Miss Latency for Config_4
(Out-of-Order processor)

Fig 10 : L2 cache occupancy by multiple cores in
Config_4

experiments, we can observe that Processors using
prefetchers and Out of order processors also faced
slowdown or increased L2 miss latency when attacker

code was executed. The highest increase(21x) in L2
overall miss latency is observed in case of Inorder
Processor, with Stride Prefetcher and small shared
cache size(256 KB). Also, we observed that increasing
the shared L2 cache size from small(256 KB) to
large(512 KB) did not have much impact on L2 overall
miss rate and L2 overall miss latency.

One interesting insight that is gained by observing
DoS attack on out of order processors. The L2 cache
overall miss rate and L2 overall cache miss latency
does not increase as quickly as in case of inorder
processors. Thus DoS attack is more successful on
Inorder processors compared to complex Out of Order
processors.

We also plotted graphs to analyze which core is
occupying how much L2 data cache. For Base
scenario(when there is no attacker code running),
cache occupancy is almost uniform for all four cores
and it is low for all of the cores. However, as we move
to Single core attack scenario(when there is attacker
program running on Core 3), Core 3 occupies major
portion(greater than 70%) of L2 data cache in all
cases. In case of Double core attack, second and third
cores in together contribute to maximum L2 cache
occupancy. When three cores are running attacker
program, then these three cores in together occupy
major portion of L2 Data cache. Thus, we simulated
multi-core platforms with different configurations and
tried performing DoS attacks on them.

VI. REFERENCES

[1] Bechtel, Michael & Yun, Heechul. (2019). Denial-of-Service

Attacks on Shared Cache in Multicore: Analysis and

Prevention. 357-367. 10.1109/RTAS.2019.00037.
[2] https://www.spec.org/cpu2006/Docs/429.mcf.html
[3] https://www.mail-archive.com/gem5-users@gem5.org/
[4] http://gem5.org/Documentation
[5] https://en.wikipedia.org/wiki/Cache_prefetching
[6] https://www.ics.uci.edu/~amrm/slides/amrm_structure/pta/tsl

d049.htm
[7] https://courses.cs.washington.edu/courses/csep548/06au/lectu

res/cacheAdv.pdf
[8] https://en.wikipedia.org/wiki/Write_buffer
[9] http://hpca23.cse.tamu.edu/taco/utsa-www/cs5513-fall07/lect

ure5.html
[10] https://en.wikipedia.org/wiki/Out-of-order_execution

https://www.spec.org/cpu2006/Docs/429.mcf.html
https://www.mail-archive.com/gem5-users@gem5.org/
http://gem5.org/Documentation
https://en.wikipedia.org/wiki/Cache_prefetching
https://www.ics.uci.edu/~amrm/slides/amrm_structure/pta/tsld049.htm
https://www.ics.uci.edu/~amrm/slides/amrm_structure/pta/tsld049.htm
https://courses.cs.washington.edu/courses/csep548/06au/lectures/cacheAdv.pdf
https://courses.cs.washington.edu/courses/csep548/06au/lectures/cacheAdv.pdf
https://en.wikipedia.org/wiki/Write_buffer
http://hpca23.cse.tamu.edu/taco/utsa-www/cs5513-fall07/lecture5.html
http://hpca23.cse.tamu.edu/taco/utsa-www/cs5513-fall07/lecture5.html
https://en.wikipedia.org/wiki/Out-of-order_execution

